Developer:	Distributor:

cad nauseam	Manusoft

PO Box 77	POB 260

Riverton WA 6148	Fredericksburg OH 44627

Australia	USA

stevejohnson@bigpond.com	owenw@manusoft.com

http://www.users.bigpond.com/stevejohnson/	http://www.manusoft.com/

DDChText 3.1

Contents

� TOC \o "1-4" �1.	Introduction	� PAGEREF _Toc525547450 \h ��1�

2.	Registration	� PAGEREF _Toc525547451 \h ��1�

3.	Features	� PAGEREF _Toc525547452 \h ��1�

3.1.	Features of the Registered and Unregistered Versions	� PAGEREF _Toc525547453 \h ��1�

3.2.	Additional Features Provided Only to Registered Users	� PAGEREF _Toc525547454 \h ��2�

4.	Upgrading From an Earlier Version	� PAGEREF _Toc525547455 \h ��3�

5.	Installation Instructions	� PAGEREF _Toc525547456 \h ��4�

5.1.	Simple Installation	� PAGEREF _Toc525547457 \h ��4�

5.2.	Files	� PAGEREF _Toc525547458 \h ��4�

5.3.	File Installation	� PAGEREF _Toc525547459 \h ��5�

5.3.1.	AutoCAD's Support File Search Path	� PAGEREF _Toc525547460 \h ��5�

5.3.2.	Using the Environment Variable Method	� PAGEREF _Toc525547461 \h ��5�

5.3.3.	Using the AutoLISP Global Variable Method	� PAGEREF _Toc525547462 \h ��6�

5.4.	Automatic Loading	� PAGEREF _Toc525547463 \h ��6�

5.5.	Menu Items	� PAGEREF _Toc525547464 \h ��7�

6.	Command Usage	� PAGEREF _Toc525547465 \h ��7�

6.1.	Toggle All	� PAGEREF _Toc525547466 \h ��8�

6.2.	Properties	� PAGEREF _Toc525547467 \h ��8�

6.2.1.	Layer	� PAGEREF _Toc525547468 \h ��8�

6.2.2.	Color	� PAGEREF _Toc525547469 \h ��9�

6.3.	Settings	� PAGEREF _Toc525547470 \h ��9�

6.3.1.	Height	� PAGEREF _Toc525547471 \h ��9�

6.3.2.	Width factor	� PAGEREF _Toc525547472 \h ��10�

6.3.3.	Mtext width	� PAGEREF _Toc525547473 \h ��10�

6.3.4.	Rotation angle	� PAGEREF _Toc525547474 \h ��10�

6.3.5.	Obliquing angle	� PAGEREF _Toc525547475 \h ��11�

6.3.6.	Style	� PAGEREF _Toc525547476 \h ��11�

6.3.7.	Justification	� PAGEREF _Toc525547477 \h ��11�

6.3.8.	Attribute Visibility	� PAGEREF _Toc525547478 \h ��12�

6.4.	Values	� PAGEREF _Toc525547479 \h ��12�

6.4.1.	Replace	� PAGEREF _Toc525547480 \h ��12�

6.4.1.1.	Overwrite Function	� PAGEREF _Toc525547481 \h ��13�

6.4.1.2.	Suffix Function	� PAGEREF _Toc525547482 \h ��13�

6.4.1.3.	Prefix Function	� PAGEREF _Toc525547483 \h ��13�

6.4.1.4.	Delete Function	� PAGEREF _Toc525547484 \h ��13�

6.4.1.5.	Delete All Function	� PAGEREF _Toc525547485 \h ��14�

6.4.1.6.	Wildcard Overwrite Function	� PAGEREF _Toc525547486 \h ��14�

6.4.1.7.	Wildcard Suffix Function	� PAGEREF _Toc525547487 \h ��15�

6.4.1.8.	Wildcard Prefix Function	� PAGEREF _Toc525547488 \h ��15�

6.4.1.9.	Character Position Replace Function	� PAGEREF _Toc525547489 \h ��16�

6.4.1.10.	Character Position Insert Function	� PAGEREF _Toc525547490 \h ��17�

6.4.1.11.	Character Position Delete Function	� PAGEREF _Toc525547491 \h ��18�

6.4.2.	Multiple Search and Replace	� PAGEREF _Toc525547492 \h ��18�

6.4.2.1.	Multiple Search and Replace Toggle	� PAGEREF _Toc525547493 \h ��19�

6.4.2.2.	Search and Replace Specification	� PAGEREF _Toc525547494 \h ��19�

6.4.2.3.	List Handling Buttons	� PAGEREF _Toc525547495 \h ��20�

6.4.2.4.	Search And Replace Specification List	� PAGEREF _Toc525547496 \h ��20�

6.4.2.5.	File Handling Buttons	� PAGEREF _Toc525547497 \h ��20�

6.4.3.	Set case	� PAGEREF _Toc525547498 \h ��20�

6.4.4.	Mtext codes	� PAGEREF _Toc525547499 \h ��21�

6.5.	Attribute Filters	� PAGEREF _Toc525547500 \h ��21�

6.6.	Object Types	� PAGEREF _Toc525547501 \h ��23�

6.7.	Exit Buttons	� PAGEREF _Toc525547502 \h ��23�

7.	Customising	� PAGEREF _Toc525547503 \h ��24�

7.1.	(naus_ddchtext_en)	� PAGEREF _Toc525547504 \h ��24�

7.2.	(naus_ddchtext_dialog)	� PAGEREF _Toc525547505 \h ��25�

7.2.1.	The INIT Parameter	� PAGEREF _Toc525547506 \h ��25�

7.2.2.	The SINGLE Parameter	� PAGEREF _Toc525547507 \h ��28�

7.2.3.	Return Value	� PAGEREF _Toc525547508 \h ��28�

7.3.	(naus_ddchtext_modss)	� PAGEREF _Toc525547509 \h ��28�

7.4.	(naus_ddchtext_modentity)	� PAGEREF _Toc525547510 \h ��29�

7.5.	The MOD-LIST Parameter	� PAGEREF _Toc525547511 \h ��29�

7.5.1.	The "search" Sub-list	� PAGEREF _Toc525547512 \h ��29�

7.5.2.	The "visible" Sub-list	� PAGEREF _Toc525547513 \h ��30�

7.5.3.	The "mtextcode" Sub-list	� PAGEREF _Toc525547514 \h ��30�

7.5.4.	The "upcase" Sub-list	� PAGEREF _Toc525547515 \h ��30�

7.5.5.	The "style" Sub-list	� PAGEREF _Toc525547516 \h ��31�

7.5.6.	The "oblique" Sub-list	� PAGEREF _Toc525547517 \h ��31�

7.5.7.	The "mtextwidth" Sub-list	� PAGEREF _Toc525547518 \h ��31�

7.5.8.	The "width" Sub-list	� PAGEREF _Toc525547519 \h ��31�

7.5.9.	The "rotation" Sub-list	� PAGEREF _Toc525547520 \h ��31�

7.5.10.	The "height" Sub-list	� PAGEREF _Toc525547521 \h ��32�

7.5.11.	The "color" Sub-list	� PAGEREF _Toc525547522 \h ��32�

7.5.12.	The "layer" Sub-list	� PAGEREF _Toc525547523 \h ��32�

7.5.13.	The "justify" Sub-list	� PAGEREF _Toc525547524 \h ��32�

7.6.	Modifying DDChText.ini	� PAGEREF _Toc525547525 \h ��33�

7.6.1.	The Highlight Setting	� PAGEREF _Toc525547526 \h ��33�

8.	Revision History	� PAGEREF _Toc525547527 \h ��33�

8.1.	Version 3.1	� PAGEREF _Toc525547528 \h ��33�

8.2.	Version 3.01	� PAGEREF _Toc525547529 \h ��34�

8.3.	Version 3.0	� PAGEREF _Toc525547530 \h ��34�

8.4.	Versions 2.02 to 2.10	� PAGEREF _Toc525547531 \h ��36�

8.5.	Version 2.01	� PAGEREF _Toc525547532 \h ��36�

8.6.	Version 2.0	� PAGEREF _Toc525547533 \h ��36�

8.7.	Version 1.01	� PAGEREF _Toc525547534 \h ��37�

8.8.	Version 1.0	� PAGEREF _Toc525547535 \h ��37�

9.	Legal Stuff	� PAGEREF _Toc525547536 \h ��37�

��
1.	Introduction

DDChText 3.1 by cad nauseam is an add-on program written for AutoCAD Release 13, Release 14, 2000, 2000i and 2002. A single command is provided: DDChText. This command provides a dialogue box to control the modification of various types of annotation (text-like) objects: text, mtext, rtext, dimension, attdef and attribute.

DDChText provides several advantages over the facilities provided by standard AutoCAD, and this is discussed below in the Features section.

The language used in this document is Australian English. The language used in the DDChText program itself is American English.

2.	Registration

DDChText is not free software: it is shareware. This means that you are encouraged to copy and distribute the unregistered version of it to whoever you like, as long as you do so unmodified and with all of the files described below in the installation instructions. You can evaluate DDChText for a trial period not exceeding 30 days. After evaluation, you should either delete or register (i.e. pay for) the program.

Registered users receive not only a warm fuzzy feeling, but also the most up-to-date version of the registered version of the program, enhanced as described in the � REF _Ref466283086 * MERGEFORMAT �3.2.	Additional Features Provided Only to Registered Users� section. The software will be sent by email: floppy disks are not sent, except on request and at extra cost.

To pay in US dollars, and/or by credit card, please register with Manusoft, either on-line at www.manusoft.com/ or using the document "DDChText Order Form.doc”. People who wish to pay by cheque in Australian dollars should register with cad nauseam, using the document “DDChText Order Form Australia.doc”.

3.	Features

3.1.	Features of the Registered and Unregistered Versions

Many different annotation objects can be modified at once using a single command. You don't have to specify the changes one at a time like you have to if you use standard commands like CHANGE, ATTEDIT or DDMODIFY.

Supports noun/verb selection. Objects can be selected before the command is invoked. If not, a traditional "Select objects:" prompt is provided. Irrelevant objects are filtered out.

If objects are selected before the command is invoked, the first-selected object is used to determine the default values in the dialogue box.

If no objects are selected before the command is invoked, the default values in the dialogue box are recalled from the last time the command was used in the current AutoCAD drawing session.

Supports global selection. You can tell DDChText to modify all text-like objects in the drawing. DDChText can modify objects off the screen, on layers that are turned off or frozen, or even in a different space if you use paper space in your drawings. It will not modify objects within blocks (except attributes), or objects on locked layers.

Allows selective modification by object type. For example, you can restrict your changes to modify only text and mtext.

Allows selective modification to attributes. You can use wildcards for block names and/or attribute tags in order to specify which attributes to change.

Allows changes to layer, colour, height, width factor, mtext frame width, rotation angle, obliquing angle, text style, justification and attribute visibility. Some of these settings are not relevant to all object types.

Allows absolute changes to current settings. For example, you can change the rotation angle of several objects to forty-five degrees, regardless of their current settings.

Allows relative changes to current settings. For example, you can increase the rotation angle of several objects by five degrees.

Allows changes to text justification while retaining the existing location of the text.

The menu file and bitmaps allow access to the command using a toolbar button.

Settings are stored in a DDEdText.ini file, which can be user-modified.

Comprehensive documentation provided in Microsoft Word format.

A set of documented functions is provided for programmers to allow them to use different components of DDChText. This feature is used by the separate cad nauseam shareware product DDEdText (Version 3.0 or later) to allow users who are editing the value of annotation objects to also change the properties of those objects.

A search and replace facility is provided. This includes the ability to add suffix or prefix values; to replace the entire text value; to perform these operations only when the text matches certain wildcards; and to replace certain characters based on their position in the original text.

3.2.	Additional Features Provided Only to Registered Users

A multiple search and replace facility is provided. You can search and replace multiple text values with a single invocation of the command. You can also save, load, and merge sets of search and replace values. This is useful if you need to perform the same operations on multiple drawings.

About once in every ten uses of the DDChText command, the unregistered version displays a reminder that it is unregistered shareware. In the registered version, this nasty nag notice is no more.

Full unencrypted, commented AutoLISP source code is provided.

4.	Upgrading From an Earlier Version

If you are upgrading from an earlier version of DDChText than 3.0, please carry out the steps described in this section, if they apply in your situation. If you are just updating from 3.0x to 3.10, just copy the new files over the old ones and ignore the rest of this section.

Remove all of the old DDChText files to a safe location where they won't get in the way (i.e. make sure AutoCAD can't find them by ensuring that are outside AutoCAD's search path). You can delete them when you're happy that the new version is working to your satisfaction.

Release 14 or later users only: Unload the old partial menu so the new one can load. To do this, start AutoCAD, enter the MENULOAD command, pick the DDCHTEXT menu group, pick the Unload button, and then Close. If you forget to do this, it's not fatal, but the first time you start AutoCAD it will warn you that it can't find the old menu file.

If you modified your ACAD.LSP or ACADDOC.LSP file during installation of an earlier version, reverse those changes. For example, using a text editor, delete all code related to DDChText. Make sure you keep a safe copy of the file before you make any changes.

DDChText 1.0 users only: If you followed the installation instructions provided with DDChText 1.0 to make modifications to your menu's .mnl file, you need to reverse those modifications. You should have a copy of the old pre-modified file available. If so, you can simply copy the old file over the modified one. For example, you may have followed instructions to use the following DOS commands from the directory in which your ACAD.MNL file is stored:

COPY ACAD.MNL A:

REN ACAD.MNL ACADMNL.OLD

COPY ACADMNL.OLD + C:\DDCHTEXT\DDCHLOAD.MNL ACAD.MNL

If so, you should have a clean copy of ACAD.MNL on a floppy disk somewhere, which you can copy over the ACAD.MNL file on your hard disk. Alternatively, you could copy the ACADMNL.OLD file over the ACAD.MNL file. Assuming you are in the directory containing both files, the DOS command to do this is:

COPY ACADMNL.OLD ACAD.MNL

If you don't have a copy of the original .mnl file, you need to edit it to delete the extra bits. Using a text editor, remove the section of code at the bottom of the file that starts like this:

;;; ---

;;; File : DDCHLOAD.MNL

and ends like this:

;;; ---

;;; End DDCHLOAD.MNL

;;; ---

Once you have performed all of the appropriate steps in this section, please move on to the � REF _Ref466865602 * MERGEFORMAT �5.	Installation Instructions� section.

5.	Installation Instructions

5.1.	Simple Installation

If you just want to install the software as quickly as possible and don't want to read about the finer points, do the following:

Copy the files to a directory in your AutoCAD search path.

Append this line to your ACAD.LSP file (ACADDOC.LSP in AutoCAD 2000 and later):

(load "DDCHACAD")

If you don't have an ACAD.LSP file (ACADDOC.LSP in AutoCAD 2000 and later), create one in your AutoCAD search path.

The rest of this section goes into more detail and gives you more options, but the two steps above should get the software working perfectly. If you are a DOS user, you will probably also want to add a menu item for the DDChText command.

If you are upgrading from an earlier version, make sure you read the section � REF _Ref465677975 * MERGEFORMAT �4.	Upgrading From an Earlier Version� first.

5.2.	Files

The shareware version of DDChText is usually supplied as a WinZip 8.0 compressed file DDChTx.zip (this should be PKZIP 2.04g compatible), which you need to unzip to get at the following files:

DDCh2002.mnc	Toolbar menu for AutoCAD 2002: compiled menu file

DDCh2002.mnr	Toolbar menu for AutoCAD 2002: menu resource file

DDCh2002.mns	Toolbar menu for AutoCAD 2002: menu source file

DDCh2002.mnu	Toolbar menu for AutoCAD 2002: original menu file

DDCh-16.bmp	Small DDChText icon bitmap for R13 and R14

DDCh-24.bmp	Large DDChText icon bitmap for R14 to 2000i

DDCh-32.bmp	Large DDChText icon bitmap for R13

DDCh-32x30.bmp	Large DDChText icon bitmap for AutoCAD 2002

DDChAcad.lsp	File for loading from ACAD.LSP or ACADDOC.LSP

DDChTe13.mnc	Toolbar menu for R13 compiled menu file

DDChTe13.mnr	Toolbar menu for R13 menu resource file

DDChTe13.mns	Toolbar menu for R13 menu source file

DDChTe13.mnu	Toolbar menu for R13 original menu file

DDChText Order Form Australia.doc	Order form for payment in Australian currency

DDChText Order Form.doc	Order form for all other types of payment

DDChText.dcl	Dialogue Control Language file

DDChText.doc	Main documentation file in Word format (this document)

DDChText.ini	File containing user-modifiable settings

DDChText.lsp	Main AutoLISP program file (unregistered)

DDChText.mnc	Toolbar menu for R14 to 2000i: compiled menu file

DDChText.mnr	Toolbar menu for R14 to 2000i: menu resource file

DDChText.mns	Toolbar menu for R14 to 2000i: menu source file

DDChText.mnu	Toolbar menu for R14 to 2000i: original menu file

The registered version is provided as archive file DDChReg.zip, which requires a password before it can be unzipped. Registered users are provided with the password, which will provide access to the following file:

DDChReg.lsp	Main AutoLISP program file (registered)

Note: The password for .zip files is case sensitive. Make sure you type it in exactly as it is given to you.

5.3.	File Installation

To install DDChText, you first unzip or copy the files to a directory (folder) of your choice. This directory can be in any one of these kinds of locations:

any directory in AutoCAD's search path; or

a directory pointed to by the environment variable DDChText; or CAD_NAUSEAM; or

a directory pointed to by the AutoLISP global variable NAUS-DDCHPREFIX.

These are described in more detail in the sub-sections below. Wherever you put the files, make sure you have them backed up somewhere safe in case you need to reinstall them.

Once you have installed the files in a location of your choice, see the � REF _Ref466865078 * MERGEFORMAT �5.4.	Automatic Loading� section to see how to make sure the DDChText command is always available, and to load a toolbar menu to provide easy access to the command.

5.3.1.	AutoCAD's Support File Search Path

In DOS versions of AutoCAD, the support file search path (where AutoCAD goes looking for things) is determined by a line that looks something like this, usually in the batch file used to start AutoCAD:

SET ACAD=C:\ACAD\SUPPORT;...

In Windows versions of AutoCAD, the PREFERENCES or OPTIONS command can be used to determine the support file search path, by looking in the Files tab. Another way of finding out the support file search path is to attempt to insert a block with a name that does not exist. AutoCAD will tell you the directories it looked in, and the order in which it looked. You can place the DDChText files an any of the directories already in the path, or you can add another directory to the search path and then place them in that directory.

On a standard AutoCAD installation, one directory you might use is COM\SUPPORT or SUPPORT under your main AutoCAD directory.

5.3.2.	Using the Environment Variable Method

Alternatively, you can put the files in their own directory which is not in AutoCAD's search path if you set the operating system environment variable DDCHTEXT. For example, if you want to put the DDChText files into the LOUISE directory of drive D, DOS and Windows 95 users can add the following line:

SET DDCHTEXT=D:\LOUISE\

to the AUTOEXEC.BAT or AutoCAD start-up batch file before the call to start AutoCAD. If you are a Windows 95 user and you don't have an AUTOEXEC.BAT file, you can create one using a text editor. Windows NT 4.0 users can use Start, Settings, Control Panel, System, and the Environment tab to set a variable called DDCHTEXT to D:\LOUISE\.

Note: Make sure you include the trailing (final) backslash. This is important.

An alternative environment variable is CAD-NAUSEAM. You may prefer to use this if you have several cad nauseam products and you want to keep them all together in one directory without setting multiple environment variables.

Note: If you use the environment variable method, there is a special consideration if you are using AutoCAD for Windows. If you ever explicitly use the MENULOAD command to compile the DDChTe13.mnu or DDChText.mnu file, the *.bmp files listed above must be located in AutoCAD's search path (which includes the working directory) at the time of compilation. If AutoCAD cannot find its *.bmp files when compiling a menu, it will use smiling faces instead of the normal button icons. If this happens to you, you will need to make sure AutoCAD's search path points to the *.bmp files, then repeat the menu compilation process.

5.3.3.	Using the AutoLISP Global Variable Method

Alternatively, you can put the files in their own directory that is not in AutoCAD's search path if you set the AutoLISP global variable NAUS-DDCHPREFIX. For example, you can add the following line:

(setq NAUS-DDCHPREFIX "D:\\LOUISE\\")

to your ACAD.LSP (ACADDOC.LSP in AutoCAD 2000 or later) file before the call to load the DDCHACAD.LSP file (see below). If you do this, then you can put the DDChText files into the LOUISE directory of drive D.

Note: As shown in the above example, make sure you use two backslashes for every single backslash in the path, and make sure you include the trailing (final) backslashes.

An alternative AutoLISP global variable is NAUS-ALLPREFIX. You may prefer to use this if you have several cad nauseam products and you want to keep them all together:

Note: If you use the global variable method, there is a special consideration if you are using AutoCAD for Windows. If you ever explicitly use the MENULOAD command to compile the DDChTe13.mnu or DDChText.mnu file, the *.bmp files listed above must be located in AutoCAD's search path (which includes the working directory) at the time of compilation. If AutoCAD cannot find its *.bmp files when compiling a menu, it will use smiling faces instead of the normal button icons. If this happens to you, you will need to make sure AutoCAD's search path points to the *.bmp files, then repeat the menu compilation process.

5.4.	Automatic Loading

Once you have copied the files to an appropriate place, you need to make sure AutoCAD is set up to automatically load the DDChText command. To do this, you need to create or modify the AutoLISP file ACAD.LSP (ACADDOC.LSP in AutoCAD 2000 or later). If you do not have an ACAD.LSP or ACADDOC.LSP file, you can create one using a text editor (e.g. Notepad). Make sure your file is somewhere in AutoCAD's search path (which is described in � REF _Ref466108546 �5.3.1.	AutoCAD's Support File Search Path�).

Whether or not the ACAD.LSP or ACADDOC.LSP file exists, you need to make sure it does exist, and that it contains a line like this:

(load "DDCHACAD")

The above example will work fine if you have placed the DDChText files in AutoCAD's search path. If you have used a directory that is not in AutoCAD's search path, then you will need to explicitly specify the directory, for example:

(load "D:\\LOUISE\\DDCHACAD")

Note: As shown in the above example, make sure you use two backslashes for every single backslash in the path.

Warning: Do not try to modify an existing ACAD.LSP or ACADDOC.LSP file if it is a protected file. Protected files start with the following words:

AutoCAD PROTECTED LISP file

Registered users may contact cad nauseam for help in working around this problem. ACAD.LSP is supposed to be a user-modifiable file, and should not be protected, but some developers protect it anyway.

5.5.	Menu Items

If you are using Release 13 for Windows or later, a toolbar menu will automatically load when AutoCAD starts. If you are using a different version (e.g. Release 13 for DOS), you will probably want to add the DDChText command to your menu.

To do this, you need to edit the menu file (e.g. ACAD.MNU) that you commonly use. You can just add a simple menu item like this:

[DDChText...]^C^CDDChText

Registered users may contact cad nauseam for help in adding such menu items.

6.	Command Usage

Assuming you have loaded the program, use of DDChText is quite simple. Once you invoke the command, a large dialogue box appears.

�

This dialogue box is divided into a number of sections, each of which is described below.

6.1.	Toggle All

This section contains two toggles: Modifications and Object types.

The Modification toggle turns on or off all toggles to do with modification settings, i.e. Layer, Color, Height, Width factor, Mtext width, Rotation angle, Obliquing angle, Style, Justification, Attribute visibility, Replace, Set case, and Mtext codes. If you turn the Modification toggle on, all of those toggles are turned on. If you turn the Modification toggle off, all of those toggles are turned off.

The Object type toggle turns on or off all toggles that determine what object types will be modified, i.e. Attdef, Attribute, Dimension, Mtext, Rtext and Text. If you turn the Object type toggle on, all of those toggles are turned on. If you turn the Object type toggle off, all of those toggles are turned off.

6.2.	Properties

This section provides control over the layer and colour of the objects to be modified.

6.2.1.	Layer

Objects affected: Attdef, Attribute, Dimension, Mtext, Rtext, and Text.

This toggle has an associated button and edit box. The initial default layer is either that of the first pre-selected object or the current layer if no objects were pre-selected. If you pick the button, you are provided with a sub-dialogue box.

�

You can choose from any of the layers currently defined in the drawing (Xref layers are not shown). You can either pick a layer and the OK button, or you can double-click on a layer. That layer will then be shown in the edit box. Alternatively, you can just type the desired layer into the edit box. If the layer does not already exist, it will be created for you.

6.2.2.	Color

Objects affected: Attdef, Attribute, Dimension, Mtext, Rtext, and Text.

This toggle has an associated button and edit box. The initial default colour is either that of the first pre-selected object, or _BYLAYER if no objects were pre-selected. If you pick the button, you are provided with AutoCAD's standard colour selection sub-dialogue box. In AutoCAD prior to Release 14, you must pick a colour and then pick OK, because AutoCAD did not support double clicking in this dialogue. Release 14 and later supports double-clicking to select a colour. Alternatively, you can just type the desired colour name or number into the edit box. If you enter a standard colour name or its number equivalent, it will be converted to upper case and shown with a leading underscore, for example _BYLAYER or _BLUE. The underscore is there to ensure that DDChText works in non-English versions of AutoCAD, and can be ignored.

6.3.	Settings

The rest of the left side of the dialogue box comprises a series of setting modification, with each toggle having an associated item or items that determine what modifications are to occur. Initially, all of these toggles are off. Only when a given toggle is turned on, are its associated items available. For example, you cannot type anything into the Rotation angle edit box until you pick the box or the words Rotation angle to turn on that modification toggle.

6.3.1.	Height

Objects affected: Attdef, Attribute, Dimension, Mtext, Rtext, and Text.

This is the height of the text. This toggle has an associated edit box in which you can type the height in drawing units. This initially defaults to either the height of the first pre-selected object, or the current text height (usually the height of the last piece of text you created) if no relevant objects were pre-selected.

There is another toggle to the right of the edit box marked "x Current". If you turn this on, the number in the edit box will be used as a scale factor to be applied to the existing height of the objects, rather than an absolute amount.

Note: You can use this setting to modify any object type except those with Align justification. AutoCAD determines such objects' height by using a combination of the distance between the defining points, the amount of text and the width factor.

Note: Using this setting to modify a dimension results in a DIMTXT dimension variable override being applied to the dimension. The dimension text height override is adjusted to set the text height to the specified number of drawing units, regardless of the dimension scale (DIMSCALE). Thus, if you specify an absolute height for several dimensions with various dimension scales, then all the dimension text will be adjusted to appear consistently that number of drawing units high. This means you will see the same visible result with dimension text height as you do with text, mtext, etc.

Note: When using this setting to modify a dimension with a dimension scale setting of 0 (i.e. scale to paper space) the scale is assumed to be 1 in the calculations which DDEdText uses to determine the height. This means you may see unexpected results if you use the "x Current" feature on 0-scale dimensions in a paper space drawing, where those dimensions appear in model space.

6.3.2.	Width factor

Objects affected: Attdef, Attribute, Rtext, and Text.

This is the amount that the text is longitudinally "stretched". You can use this setting to modify any object type except mtext and those with Fit justification. On objects with Align justification, increasing this factor decreases the height of the text. This toggle has an associated edit box in which you can type the factor as a ratio. This initially defaults to either the width factor of the first pre-selected object, or 1.0 (which gives text the default width as defined in the font file) if no relevant objects were pre-selected.

There is another toggle to the right of the edit box marked "x Current". If you turn this on, the number in the edit box will be used as a scale factor to be applied to the existing width factor of the objects, rather than an absolute amount.

Note: This setting cannot be modified for objects with Align or Fit justification. The effective width factor of such objects is determined by the defining points and the amount of text.

6.3.3.	Mtext width

Objects affected: Mtext.

This is the width of the frame used to define the extents of an mtext object. This setting does not apply to any other object type. This toggle has an associated edit box in which you can type the width. This initially defaults to either the width of the first pre-selected object, or 0.0 (which gives mtext an infinite width) if no relevant objects were pre-selected. Mtext with zero width does not wrap around, and requires any new lines to be entered explicitly. Using this setting is supposed to improve AutoCAD's performance.

There is another toggle to the right of the edit box marked "x Current". If you turn this on, the number in the edit box will be used as a scale factor to be applied to the existing width of the objects, rather than an absolute amount.

6.3.4.	Rotation angle

Objects affected: Attdef, Attribute, Mtext, Rtext, and Text.

This is the rotation angle of the text. This toggle has an associated edit box in which you can type the angle. This initially defaults to either the angle of the first pre-selected object, or the angle equivalent to horizontal (which is 0.0 using AutoCAD's default units) if no relevant objects were pre-selected.

There is another toggle to the right of the edit box marked "+ Current". If you turn this on, the number in the edit box will be added to the existing rotation angle of the objects, rather than being used as an absolute amount. If you want to rotate the objects in the opposite direction, use a negative angle.

The rotation angle uses the direction and starting angle of the current units settings. For example, using AutoCAD's default units settings, a rotation angle of 10 will result in text slightly twisted from horizontal, with the end of the text higher than the start of the text. Using the "+ Current" mechanism, positive angles will rotate the text anti-clockwise (counter-clockwise) and negative angles will rotate the text clockwise.

Using units settings such that angles increase in a clockwise direction from a base angle of North, the same piece of text will have a rotation angle of 80. An angle of 10 will result in text slightly twisted from the vertical, with the end of the text further right than the start of the text Using the "+ Current" mechanism, positive angles will rotate the text clockwise and negative angles will rotate the text anti-clockwise (counter-clockwise).

Note: This setting cannot be modified for objects with Align or Fit justification. The effective rotation angle of such objects is determined by the defining points.

6.3.5.	Obliquing angle

Objects affected: Attdef, Attribute, and Text.

This is the angle that the text leans over. This toggle has an associated edit box in which you can type the angle. This initially defaults to either the obliquing angle of the first pre-selected object, or 0.0 if no relevant objects were pre-selected. . If you attempt to specify an obliquing angle outside the range of plus or minus 80 degrees, the DDChText dialogue box will disallow the request.

There is another toggle to the right of the edit box marked "+ Current". If you turn this on, the number in the edit box will be added to the existing obliquing angle of the objects, rather than being used as an absolute amount. If you want to lean the objects in the opposite direction, use a negative angle. If you attempt to modify objects such that their obliquing angle is outside the range of plus or minus 80 degrees, DDChText will not modify the text in that way.

The obliquing angle direction always follows the same rules, regardless of the current units settings. A positive angle leans the text to the right and a negative angle leans the text to the left.

6.3.6.	Style

Objects affected: Attdef, Attribute, Dimension, Mtext, Rtext, and Text.

This is the text style, which in turn determines the font file used. This toggle has an associated popup list, from which you can choose the style you require. This initially defaults to either the style of the first pre-selected object, or the current style if no relevant objects were pre-selected. A style must be defined in the drawing before it is available in this list.

Note: Using this setting to modify a dimension results in a DIMTXSTY dimension variable override being applied to the dimension.

6.3.7.	Justification

Objects affected: Attdef, Attribute, Mtext, and Text.

The justification is the way that the text expands away from its insertion point. This toggle has an associated popup list from which you can choose the justification you require. This initially defaults to either the justification of the first pre-selected object, or Left if no relevant objects were pre-selected.

There is another toggle to the right of the edit box marked "In situ". If you turn this on, the insertion point of the text is moved in an attempt to keep the text in its current location. Note that it will not be possible to keep the text in exactly the same position, in those cases where changes such as height and rotation angle are performed simultaneously.

Note: AutoCAD does not make the Left, Center, Middle and Right justifications available in mtext. If you use DDChText to change mtext objects to one of these justifications, the closest equivalent justification is used.

Note: Align and Fit justification are not available, as these would require additional definition point information which is different for each object, and would therefore require user intervention for each object in turn.

6.3.8.	Attribute Visibility

Objects affected: Attribute.

This determines whether or not an attribute is visible. The Attribute Visibility toggle has an associated Visible toggle. When this is turned on, attributes selected for modification are made visible, and when it is turned off, they are made invisible.

Note that the ATTDISP command can be used to make all attributes visible or invisible, regardless of what you do in DDChText. The attribute visibility setting only makes a difference when the ATTDISP setting is Normal. The Visible toggle defaults to being turned on.

6.4.	Values

This section affects only the text values of objects. It contains three modification toggles: Replace, Set Case and Mtext Codes.

6.4.1.	Replace

Objects affected: Attribute, Dimension, Mtext, Rtext, and Text.

This toggle has two associated edit boxes in which you can type the text to search for and the text to replace it with. It also has a toggle to determine whether the search is case sensitive. The case of the replace text is always used exactly as you type it. So, if you do a case-insensitive search of “A” with “aAa”, the text “ABC abc” will be changed to “aAaBC aAabc”.

Note: Although search and replace operations can be performed on dimension text, these will only affect modified dimension text. For example, if a dimension's default text is "10.00" but it had its dimension text modified to "<> OVERALL", the dimension will appear as "10.00 OVERALL". However, the "10.00" part will be ignored by the search and replace operation.

Here are some examples of how the basic search and replace operation works:

Search�
Replace�
Case�
Before�
After�
�
a�
XXX�
(�
Sample text�
SXXXmple text�
�
a�
XXX�
(�
ABC abc�
ABC XXXbc�
�
a�
XXX�
(�
Sample text�
SXXXmple text�
�
a�
XXX�
(�
ABC abc�
XXXBC XXXbc�
�
s�
XXX�
(�
Sample text�
Sample text�
�
s�
XXX�
(�
ABC abc�
ABC abc�
�
s�
XXX�
(�
Sample text�
XXXample text�
�
s�
XXX�
(�
ABC abc�
ABC abc�
�
A�
A�
(�
Sample text�
Sample text�
�
A�
A�
(�
ABC abc�
ABC abc�
�
A�
A�
(�
Sample text�
SAmple text�
�
A�
A�
(�
ABC abc�
ABC Abc�
�
It is possible to perform special search and replace functions by entering special character sequences as the search and replace text. These functions are described in the following sub-sections.

6.4.1.1.	Overwrite Function

If the search text is * and the replace text does not begin with nor end in *, then the replace text will be used to completely replace the text value of each item.

Search�
Replace�
Case�
Before�
After�
�
*�
XXX�
Either�
Sample text�
XXX�
�
*�
XXX�
Either�
ABC abc�
XXX�
�
6.4.1.2.	Suffix Function

If the search text is * and the replace text begins with * and contains text after the *, then the replace text after * will be placed at the end of each item.

Search�
Replace�
Case�
Before�
After�
�
*�
*XXX�
Either�
Sample text�
Sample textXXX�
�
*�
*XXX�
Either�
ABC abc�
ABC abcXXX�
�
6.4.1.3.	Prefix Function

If the search text is * and the replace text ends with * and contains text before the *, then the replace text before * will be placed at the start of each item. Alternatively, if no search text is provided, the replace text is placed at the start of each item.

Search�
Replace�
Case�
Before�
After�
�
*�
XXX*�
Either�
Sample text�
XXXSample text�
�
*�
XXX*�
Either�
ABC abc�
XXXABC abc�
�
�
XXX�
Either�
Sample text�
XXXSample text�
�
�
XXX�
Either�
ABC abc�
XXXABC abc�
�
6.4.1.4.	Delete Function

If no replace text is provided, the search text is deleted from each item.

Search�
Replace�
Case�
Before�
After�
�
a�
�
(�
Sample text�
Smple text�
�
a�
�
(�
ABC abc�
ABC bc�
�
a�
�
(�
Sample text�
Smple text�
�
a�
�
(�
ABC abc�
BC bc�
�
sample�
�
(�
Sample text�
Sample text�
�
sample�
�
(�
ABC abc�
ABC abc�
�
sample�
�
(�
Sample text�
text�
�
sample�
�
(�
ABC abc�
ABC abc�
�
6.4.1.5.	Delete All Function

If the search text is * and no replace text is provided, each item has all of its text deleted.

Search�
Replace�
Case�
Before�
After�
�
*�
�
Either�
Sample text�
�
�
*�
�
Either�
ABC abc�
�
�
*�
�
Either�
Sample text�
�
�
*�
�
Either�
ABC abc�
�
�
Warning: Doing this with text, mtext or rtext object types will lead to objects which contain nothing, but which still exist invisibly in the drawing. It is generally not sensible to do this. You may have valid reasons for doing it to such objects, but typically you would only use this feature on attributes within visible blocks.

6.4.1.6.	Wildcard Overwrite Function

The next few functions use the wildcard search mechanism. If the search text begins with [*], then the text following the [*] is used as a wildcard. If the wildcard matches the original text, then the replace is performed. The wildcards use the standard AutoCAD wildcard scheme, as described in the following table, which is a corrected version of that found in the AutoCAD documentation:

Character�
Definition�
�
* (asterisk)�
Matches any character sequence, including an empty one, and it can be used anywhere in the search pattern: at the beginning, middle, or end.�
�
? (question mark)�
Matches any single character.�
�
(pound/hash)�
Matches any single numeric digit.�
�
@ (at)�
Matches any single alphabetic character.�
�
. (period)�
Matches any single non-alphanumeric character.�
�
~ (tilde)�
If it is the first character in the pattern, it matches anything except the pattern.�
�
[...]�
Matches any one of the characters enclosed.�
�
[~...]�
Matches any single character not enclosed.�
�
- (hyphen)�
Used inside brackets to specify a range for a single character.�
�
, (comma)�
Separates two patterns.�
�
` (reverse quote)�
Escapes special characters (reads next character literally).�
�
(space)�
Matches one or more spaces.�
�
The following examples show how the [*] character sequence can be used to selectively overwrite the values of certain text items. If the search text begins with [*] and the replace text does not begin with nor end in *, then the replace text will be used to completely replace the text value of each item that matches the wildcard following [*] in the search text.

Search�
Replace�
Case�
Before�
After�
�
[*]s*�
XXX�
(�
Sample text�
Sample text�
�
[*]s*�
XXX�
(�
ABC abc�
ABC abc�
�
[*]s*�
XXX�
(�
Sample text�
XXX�
�
[*]s*�
XXX�
(�
ABC abc�
ABC abc�
�
[*]?A*�
XXX�
(�
Sample text�
Sample text�
�
[*]?A*�
XXX�
(�
ABC abc�
ABC abc�
�
[*]?A*�
XXX�
(�
Sample text�
XXX�
�
[*]?A*�
XXX�
(�
ABC abc�
ABC abc�
�
[*]*A*�
XXX�
(�
Sample text�
Sample text�
�
[*]*A*�
XXX�
(�
ABC abc�
XXX�
�
[*]*A*�
XXX�
(�
Sample text�
XXX�
�
[*]*A*�
XXX�
(�
ABC abc�
XXX�
�
[*]?AM*�
XXX�
(�
Sample text�
Sample text�
�
[*]?AM*�
XXX�
(�
ABC abc�
ABC abc�
�
[*]?AM*�
XXX�
(�
Sample text�
XXX�
�
[*]?AM*�
XXX�
(�
ABC abc�
ABC abc�
�
6.4.1.7.	Wildcard Suffix Function

If the search text begins with [*] and the replace text begins with * and contains text after the *, then the replace text after * will be placed at the end of each item that matches the wildcard following [*] in the search text.

Search�
Replace�
Case�
Before�
After�
�
[*]s*�
*XXX�
(�
Sample text�
Sample text�
�
[*]s*�
*XXX�
(�
ABC abc�
ABC abc�
�
[*]s*�
*XXX�
(�
Sample text�
Sample textXXX�
�
[*]s*�
*XXX�
(�
ABC abc�
ABC abc�
�
[*]?A*�
*XXX�
(�
Sample text�
Sample text�
�
[*]?A*�
*XXX�
(�
ABC abc�
ABC abc�
�
[*]?A*�
*XXX�
(�
Sample text�
Sample textXXX�
�
[*]?A*�
*XXX�
(�
ABC abc�
ABC abc�
�
[*]*A*�
*XXX�
(�
Sample text�
Sample text�
�
[*]*A*�
*XXX�
(�
ABC abc�
ABC abcXXX�
�
[*]*A*�
*XXX�
(�
Sample text�
Sample textXXX�
�
[*]*A*�
*XXX�
(�
ABC abc�
ABC abcXXX�
�
[*]?AM*�
*XXX�
(�
Sample text�
Sample text�
�
[*]?AM*�
*XXX�
(�
ABC abc�
ABC abc�
�
[*]?AM*�
*XXX�
(�
Sample text�
Sample textXXX�
�
[*]?AM*�
*XXX�
(�
ABC abc�
ABC abc�
�
6.4.1.8.	Wildcard Prefix Function

If the search text is * and the replace text begins with * and contains text after the *, then the replace text after * will be placed at the end of each item that matches the wildcard following [*] in the search text.

Search�
Replace�
Case�
Before�
After�
�
[*]s*�
XXX*�
(�
Sample text�
Sample text�
�
[*]s*�
XXX*�
(�
ABC abc�
ABC abc�
�
[*]s*�
XXX*�
(�
Sample text�
XXXSample text�
�
[*]s*�
XXX*�
(�
ABC abc�
ABC abc�
�
[*]?A*�
XXX*�
(�
Sample text�
Sample text�
�
[*]?A*�
XXX*�
(�
ABC abc�
ABC abc�
�
[*]?A*�
XXX*�
(�
Sample text�
XXXSample text�
�
[*]?A*�
XXX*�
(�
ABC abc�
ABC abc�
�
[*]*A*�
XXX*�
(�
Sample text�
Sample text�
�
[*]*A*�
XXX*�
(�
ABC abc�
XXXABC abc�
�
[*]*A*�
XXX*�
(�
Sample text�
XXXSample text�
�
[*]*A*�
XXX*�
(�
ABC abc�
XXXABC abc�
�
[*]?AM*�
XXX*�
(�
Sample text�
Sample text�
�
[*]?AM*�
XXX*�
(�
ABC abc�
ABC abc�
�
[*]?AM*�
XXX*�
(�
Sample text�
XXXSample text�
�
[*]?AM*�
XXX*�
(�
ABC abc�
ABC abc�
�
6.4.1.9.	Character Position Replace Function

The next few functions use the character position search mechanism. If the search text begins with [#] and is followed by one or two numbers, then the characters specified by those numbers are replaced by the replace text. The syntax of the character position search mechanism is as follows:

[#]position

or:

[#]position length

where position is a number that specifies the character number at which the replacement should start, and length is the number of characters to replace. For example, given original text of ABCDEFG and a search specification of [#]3 4, the characters CDEF will be replaced. That is, the character at position 3 (i.e. character C) is the start character, and a total of 4 characters, including the start character, are replaced. A is located at position 1, B is 2, C is 3, D is 4, etc. If the character position exceeds the length of the original text, any replacement text is placed at the end. In such cases the length value is irrelevant.

The position number may be negative, in which case the character position is determined by counting starting at the end of the original text, not the start. For example, given original text of ABCDEFG and a search specification of [#]-3 2, the characters EF will be replaced. That is, the character at a position 3 from the end (i.e. character E) is the start character, and a total of 2 characters, including the start character, are replaced. G is located at position -1, F is -2, E is -3, D is -4, etc. If the character position works out to be before the start of the original text, the character position is deemed to be 1, i.e. the replacement text is placed at the start.

The position value cannot be zero. If it is, no change will be made to the text.

The length value cannot be zero. If it is, no change will be made to the text.

The length value can be negative, but if a negative value is provided, it is treated as if it were positive.

Confused yet? Don't worry, it’s easier than it sounds. The following examples show how the character position search mechanism can be used to replace text at various positions.

Search�
Replace�
Case�
Before�
After�
�
[#]1 3�
XXX�
Either�
Sample text�
XXXple text�
�
[#]1 3�
XXX�
Either�
ABC abc�
XXX abc�
�
[#]3 1�
XXX�
Either�
Sample text�
SaXXXple text�
�
[#]3 1�
XXX�
Either�
ABC abc�
ABXXX abc�
�
[#]99 1�
XXX�
Either�
Sample text�
Sample textXXX�
�
[#]99 1�
XXX�
Either�
ABC abc�
ABC abcXXX�
�
[#]-1 10�
XXX�
Either�
Sample text�
Sample texXXX�
�
[#]-1 10�
XXX�
Either�
ABC abc�
ABC abXXX�
�
[#]-3 1�
XXX�
Either�
Sample text�
Sample tXXXxt�
�
[#]-3 1�
XXX�
Either�
ABC abc�
ABC XXXbc�
�
[#]-99 3�
XXX�
Either�
Sample text�
XXXple text�
�
[#]-99 3�
XXX�
Either�
ABC abc�
XXX abc�
�
6.4.1.10.	Character Position Insert Function

If only position is provided, the number of characters to replace is zero, i.e. no characters are replaced but the number specified by position is used as the start position for insertion of the replacement text. Given a positive position value, the replacement text is placed before the specified character. For example, given original text of ABCDEFG and a search specification of [#]3, the replacement text is placed such that it starts at position 3 (i.e. it is inserted before character C).

If only position is provided and it is negative, the character position is determined by counting starting at the end of the original text and the replacement text is again placed before the specified character. For example, given original text of ABCDEFG and a search specification of [#]-3, the replacement text is placed such that it starts at position -3 (i.e. inserted before character E).

The following examples show how the character position search mechanism can be used to insert text at various positions.

Search�
Replace�
Case�
Before�
After�
�
[#]3�
XXX�
Either�
Sample text�
SaXXXmple text�
�
[#]3�
XXX�
Either�
ABC abc�
ABXXXC abc�
�
[#]1�
XXX�
Either�
Sample text�
XXXSample text�
�
[#]1�
XXX�
Either�
ABC abc�
XXXABC abc�
�
[#]99�
XXX�
Either�
Sample text�
Sample textXXX�
�
[#]99�
XXX�
Either�
ABC abc�
ABC abcXXX�
�
[#]-3�
XXX�
Either�
Sample text�
Sample tXXXext�
�
[#]-3�
XXX�
Either�
ABC abc�
ABC XXXabc�
�
[#]-1�
XXX�
Either�
Sample text�
Sample texXXXt�
�
[#]-1�
XXX�
Either�
ABC abc�
ABC abXXXc�
�
[#]-99�
XXX�
Either�
Sample text�
XXXSample text�
�
[#]-99�
XXX�
Either�
ABC abc�
XXXABC abc�
�
6.4.1.11.	Character Position Delete Function

This is just an extension of the character position replace function. If a character position specification is provided as the search text, and no replacement text is provided, then the specified character positions are deleted.

Search�
Replace�
Case�
Before�
After�
�
[#]1 3�
�
Either�
Sample text�
ple text�
�
[#]1 3�
�
Either�
ABC abc�
abc�
�
[#]3 1�
�
Either�
Sample text�
Samle text�
�
[#]3 1�
�
Either�
ABC abc�
ABCabc�
�
[#]99 3�
�
Either�
Sample text�
Sample text�
�
[#]99 3�
�
Either�
ABC abc�
ABC abc�
�
[#]-1 10�
�
Either�
Sample text�
Sample tex�
�
[#]-1 10�
�
Either�
ABC abc�
ABC ab�
�
[#]-3 1�
�
Either�
Sample text�
Sample txt�
�
[#]-3 1�
�
Either�
ABC abc�
ABC bc�
�
[#]-99 3�
�
Either�
Sample text�
ple text�
�
[#]-99 3�
�
Either�
ABC abc�
abc�
�
6.4.2.	Multiple Search and Replace

Objects affected: Attribute, Dimension, Mtext, Rtext, and Text.

The multiple search and replace function is available only to registered users. It allows multiple search and replace operations to be performed using a single DDChText command. It also allows lists of search and replace operations to be saved to disk and re-used later.

To use the multiple replace feature, pick the Multiple button within the Replace area. For registered users, this will bring up the Multiple Search and Replace dialogue box:

 �EMBED Word.Picture.8���

The following sub-sections describe the various parts of this dialogue box.

6.4.2.1.	Multiple Search and Replace Toggle

Either the standard or the multiple search and replace feature is used in a single DDChText command, never both. The toggle at the top of the Multiple Search and Replace dialogue box determines whether or not the multiple search and replace feature is used. If this toggle is turned on, the items in the dialogue box are enabled, and after you pick OK and return to the main DDChText dialogue box, you will see that the standard search and replace edit boxes and toggle are disabled and the edit boxes contain the text "- Multiple -".

6.4.2.2.	Search and Replace Specification

As in the standard search and replace feature, there are edit boxes in which you type the text to search for and the text to replace it with, plus a toggle to determine whether the search is case sensitive. These items work in exactly the same way as in the standard search and replace feature, so special search and replace functions are available by entering the same special character sequences as those described above.

However, simply entering the values and picking OK is not enough. You need to add the search and replace specification to the list of search and replace specifications, using one of the list-handling buttons described below.

6.4.2.3.	List Handling Buttons

Below the search and replace specification items is a row of buttons that is used to manipulate the search and replace specification list below the buttons. These buttons are:

Insert	This will insert the current search and replace specification into the list of search and replace specifications. If there are already some items in the list, the new specification will be inserted at the highlighted position. The existing highlighted line, and any other lines below it, will be moved down.

Append	This will add the current search and replace specification to the list of search and replace specifications. The new specification will be inserted at the end of the list.

Replace	This will insert the current search and replace specification into the list of search and replace specifications. If there are already some items in the list, the new specification will be inserted at the highlighted position, replacing the existing highlighted line.

Delete	This will delete the search and replace specification at the highlighted position.

Delete All	This will delete all of the items in the search and replace specification list.

6.4.2.4.	Search And Replace Specification List

This list box shows all of the search and replace specifications that have been entered. Each line shows first the search text, then the replace text, then, if the search is case sensitive, the word Case. If you pick one of the lines in the list, the search and replace specification edit boxes and toggles will change to reflect the selected line.

6.4.2.5.	File Handling Buttons

Below the search and replace specification list is a row of buttons for saving and restoring lists of search and replace specifications. The buttons are:

Save	This invokes a file dialogue box that allows you to save the search and replace specification list as a new search and replace list file (*.srl).

Load	This invokes a file dialogue box that allows you to select an existing search and replace list file (*.srl) to load. The search and replace specifications in the selected file will replace those in the current list.

Merge	This invokes a file dialogue box that allows you to select an existing search and replace list file (*.srl) to merge. The search and replace specifications in the selected file will be appended to those in the current list.

6.4.3.	Set case

Objects affected: Attribute, Dimension, Mtext, Rtext, and Text.

This toggle has an associated row of radio buttons from which you can choose the type of case you wish to set the text to. This defaults to Upper. The following cases are available:

Upper	THE TEXT IS ALL IN UPPER CASE LETTERS.

Title	The First Letter Of Each Word Is An Upper Case Letter.

Sentence	The first letter of each sentence is an upper case letter. Subsequent sentences also have an initial upper case letter.

Lower	the text is all in lower case letters.

Note: Special mtext codes are deliberately ignored. This feature prevents problems that would otherwise occur if the case-sensitive mtext codes were modified. For example, when converting the mtext value "LINE 1\PLINE 2" to lower case, the new paragraph code \P is left alone and the resultant value is therefore "line 1\Pline 2".

Note: Although set case operations can be performed on dimension text, these will only affect modified dimension text, as is the case with the search and replace operation.

6.4.4.	Mtext codes

Objects affected: Mtext.

This toggle is used to perform special operations on the special codes that are stored within mtext objects. These codes are listed in the AutoCAD documentation. Two options are available:

Relative height	When you use the internal mtext editor to specify certain parts of an mtext object as having a specific height, that height is placed into the mtext string as an absolute height. For example, if you edit mtext with an overall height of 10 and change one word to a height of 5, the resultant mtext string will look like this:

This is a \H5;small\H10; word

	If you then change the height of the mtext to 2.5, or use the SCALE command with a scale factor of 0.25, the words "This is a" will change to 2.5, but the word "small" will remain 5 high and the word "word" will remain 10 high. This undesirable behaviour can be corrected by using the Mtext codes Relative height option prior to changing the mtext height. This would change the mtext string to this, which uses relative heights, which will scale correctly:

This is a \H0.50x;small\H2.00x; word

Strip all	This option removes all mtext codes from the mtext, making it as "simple" as possible. This includes hard returns, which are replaced by a single space.

6.5.	Attribute Filters

Below the Values section is an Attribute filters section. This section is only available if the Attribute object type toggle is on. This section allows you to specify which attributes are to be changed by specifying the block and tag names in a pair of edit boxes. You can use any of AutoCAD's standard wildcard methods in either edit box, allowing you quite sophisticated control over which attributes are to be modified. See the AutoCAD documentation or the table in the � REF _Ref466282061 �6.4.1.6.	Wildcard Overwrite Function� section above for details of how wildcards work.

Alternatively, you can pick the Block name button to invoke the following dialogue box:

�

This is a list of all non-xref named blocks in the drawing. You can select a block name from this list and pick OK, or you can double-click on a block name to select an item and dismiss the dialogue box. Alternatively, you can select multiple block names using the Ctrl and Shift keys, before picking OK. The block names you select will then appear in the block name edit box, separated by commas.

Similarly, you can pick the Tag Name button to see a dialogue box like this:

�

This is a list of all attribute tags in all non-xref named blocks in the drawing. You can select a tag name from this list and pick OK, or you can double-click on a tag name to select an item and dismiss the dialogue box. Alternatively, you can select multiple block names using the Ctrl and Shift keys, before picking OK. The tag names you select will then appear in the tag name edit box, separated by commas.

6.6.	Object Types

This section comprises a column of toggles. Each toggle represents an object type on which DDChText will operate. You can turn the entity types on or off in any combination. In the Toggle All section, the Object types toggle can be used to turn on or off all of the object types at once.

Note: Although the Dimension object type is available, the changes that can be made to dimensions are likely to be of limited use to most users. In order to allow as many changes to dimension text as possible, and in order to provide features that are not available using standard AutoCAD commands, the changes are made to the text or mtext within the dimension block. This means that the rest of the dimension will not change to fit the modified text, and that the changes will be lost as soon as the dimension is modified. In most cases, you should make changes to dimensions using the DDIM and/or DIMSTYLE commands to create and apply dimension styles or overrides which reflect your required changes.

6.7.	Exit Buttons

There are three buttons at the bottom right of the dialogue box: OK, Global and Cancel.

OK	If you pick this button after specifying some modifications in the top part of the dialogue, the dialogue box will be dismissed. If you pre-selected some objects before starting DDChText, your modifications will be applied to your selected objects. If not, you will be presented with the standard AutoCAD "Select objects:" prompt sequence and can use any of the standard selection mechanisms to choose which objects to modify. In versions 1.0 and 1.01, this button was marked "Select".

	If you wish to use the AutoCAD FILTER command (or any other AutoLISP or ADS utility) to select objects in a special way, you should do this first, then invoke DDChText and use the Previous option at the "Select objects:" prompt. You need to do this because AutoCAD does not allow the use of one AutoLISP command while another is running.

Global	If you pick this button after specifying some modifications in the top part of the dialogue, the dialogue box will be dismissed and your modifications will be applied to all objects in the drawing which match the entity types you selected. If you pre-selected some objects before starting DDChText, the pre-selection is ignored and the changes will be made globally. In versions 1.0 and 1.01, this button was marked "All".

Cancel	If you pick this button, the dialogue box will be dismissed and no modifications will be made.

7.	Customising

DDChText from Version 2.0 onwards has been provided with an open architecture. This means you can use it as provided, or you can use the main functions of the program as you wish to suit your own internal requirements. Remember that when you start doing this, you are in control of the situation and it is your responsibility to back up the original files and any modified files, document what you have done, debug it when it all goes horribly wrong, and generally act like a software developer.

Please note that it would be an infringement of copyright to distribute any part of the software in modified form outside your own organisation.

DDChText is written in such a way as to allow programmers to use the main functions of the program in their own AutoLISP routines. Note that routines written around DDChText must not be distributed other than to registered users of DDChText.

There are four functions documented for use by programmers, and a .ini file containing settings which can be modified.

7.1.	(naus_ddchtext_en)

This is the highest-level function, and it effectively calls DDChText for the purposes of modifying a single annotation object. The syntax is:

(naus_ddchtext_en EN)

The EN parameter must be an entity name. The settings from the EN object are used for the DDChText defaults. The Entity types section is disabled, as is the Global button. If the user picks the Cancel button, nothing happens. If the user picks the OK button and the user has requested changes, the entity is modified using (entmod). Note that if the entity is an attribute, the calling routine will have to perform an (entupd) on the block before the changes are visible.

If the function performs an (entmod), it returns the resultant (entget)-type list. If not, nil is returned.

7.2.	(naus_ddchtext_dialog)

This function invokes the main DDChText dialogue box and passes control to the user. Note that this is simply a user input collection function: it does not perform any changes to the drawing. The syntax is:

(naus_ddchtext_dialog INIT SINGLE)

7.2.1.	The INIT Parameter

The INIT parameter determines the default values of the dialogue box. It is required, but can be nil.

If it is nil, the default values are set as described elsewhere in this documentation for the case where no relevant object has been pre-selected.

If it is an entity name, the settings from that entity name are used for the defaults. This is the mechanism used by DDChText where a relevant object has been pre-selected.

Finally, if it is a non-nil list, specific defaults can be passed in based on the contents of the list. Each item in the list must be a list of two elements: a symbol and a value. The symbol represents a local variable name used internally by the program to initialise the dialogue box, and the value represents the contents of that local variable. Here is a comprehensive example call using this method, which shows the permitted symbol names and the type of data required for each symbol:

(naus_ddchtext_dialog

 (list ; Start of INIT parameter

; Attribute filter block name wildcard

; [string]

 (list 'block "*")

; Search text case sensitivity

; ["0"=insensitive, "1"=sensitive]

 (list 'case "1")

; Colour number

; [integer: 0 = ByBlock, 256=ByLayer]

 (list 'color 256)

; Colour toggle

; ["0" = off, "1" = on]

 (list 'color-toggle "1")

; Height

; [real]

 (list 'height 0.2)

; Height relative?

; ["0" = no, "1" = yes]

 (list 'height-rel "1")

; Height toggle

; ["0" = off, "1" = on]

 (list 'height-toggle "1")

; Justification

; [position in list, integer string, e.g. "3"=Right]

 (list 'justify "4")

; Justification in situ?

; ["0" = no, "1" = yes]

 (list 'justify-rel "1")

; Justification toggle

; ["0" = off, "1" = on]

 (list 'justify-toggle "1")

; Layer name

 (list 'layer "0")

; Layer toggle

; ["0" = off, "1" = on]

 (list 'layer-toggle "1")

; Mtext code operation

; ["mtextcode_strip_height" or "mtextcode_strip_all"]

 (list 'mtextcode "mtextcode_strip_height")

; Mtext code operation toggle

; ["0" = off, "1" = on]

 (list 'mtextcode-toggle "1")

; Mtext width

; [real: 0.0 = no width restriction]

 (list 'mtextwidth 7.1066)

; Mtext width relative?

; ["0" = no, "1" = yes]

 (list 'mtextwidth-rel "1")

; Mtext width toggle

; ["0" = off, "1" = on]

 (list 'mtextwidth-toggle "1")

; Object type filter

; [bit-coded integer:

; text = 1, mtext = 2, dimension = 4,

; attdef = 8, attrib = 16, rtext = 32]

 (list 'object 127)

; Obliquing angle

; [Real: radians]

 (list 'oblique 0.0)

; Obliquing angle relative?

; ["0" = no, "1" = yes]

 (list 'oblique-rel "1")

; Obliquing angle toggle

; ["0" = off, "1" = on]

 (list 'oblique-toggle "1")

; Replace text

; [string]

 (list 'replace "R")

; Rotation angle

; [Real: radians]

 (list 'rotation 0.0)

; Rotation angle relative?

; ["0" = no, "1" = yes]

 (list 'rotation-rel "1")

; Rotation angle toggle

; ["0" = off, "1" = on]

 (list 'rotation-toggle "1")

; Search text

 (list 'search "S")

; Search and replace toggle

; ["0" = off, "1" = on]

 (list 'search-toggle "1")

; Text style

; [position in list, integer string, e.g. "1"=2nd item]

 (list 'style "0")

; Text style toggle

; ["0" = off, "1" = on]

 (list 'style-toggle "1")

; Attribute filter tag name wildcard

; [string]

 (list 'tag "*")

; Case setting

; ["upper", "mixed", "sentence" or "lower"]

 (list 'upcase "upper")

; Case setting toggle

; ["0" = off, "1" = on]

 (list 'upcase-toggle "1")

; Attribute visibility

; ["0" = invisible, "1" = visible]

 (list 'visible-rel "1")

; Attribute visibility toggle

; ["0" = off, "1" = on]

 (list 'visible-toggle "1")

; Text width factor

; [real]

 (list 'width 1.0)

; Text width factor relative?

; ["0" = no, "1" = yes]

 (list 'width-rel "1")

; Text width factor toggle

; ["0" = off, "1" = on]

 (list 'width-toggle "1")

) ; End of INIT parameter

 nil ; SINGLE parameter

) ; End of (naus_ddchtext_dialog) call

You are not required to pass in all of the permitted symbols. Any you omit will just use the default values. Thus, this is a perfectly valid call:

(naus_ddchtext_dialog

 '((layer "TEXT") (layer-toggle "1"))

 nil

)

7.2.2.	The SINGLE Parameter

The SINGLE parameter is Boolean: if it is a non-nil value, then the dialogue is assumes to have been called for the purposes of modifying the properties of a single object, and the Object types section is disabled, as is the Global button. The DDEdText program uses this mechanism when it calls up the DDChText dialogue box.

7.2.3.	Return Value

Once the user has dismissed the dialogue box, the (naus_ddchtext_dialog) function returns a list of 4 elements:

ACTION	An integer indicating the final button the user picked (0=Cancel, 1=OK, 2=Global). Never nil.

MOD-LIST	A list of lists indicating the modifications requested by the user. Will be nil if the user chose to make no modifications (see below).

E-LIST	A filter list suitable for use in (ssget) in order to select the objects chosen by the user. If the user deselects all entity type toggles, the list will be:

((-4 . "<OR") (-4 . "OR>"))

TAG	A string containing the tag name wildcard. Never nil, but may not be a useful wildcard.

The MOD-LIST and TAG elements of the return list are suitable for passing, together with a selection set and a couple of other parameters, to the (naus_ddchtext_modss) function.

7.3.	(naus_ddchtext_modss)

This function performs modifications to a selection set of annotation objects. The syntax is:

(naus_ddchtext_modss SS MOD-LIST TAG VOCAL UPDATE)

The SS parameter is a selection set of annotation objects to process according to the contents of the MOD-LIST parameter (see below). SS must be a valid selection set. If the selection set contains blocks, all blocks will be processed and searched for attributes matching the TAG parameter. If it contains non-annotation objects, then they will slow down the processing but will be otherwise ignored. The VOCAL parameter is Boolean: if non-nil, messages will be displayed in the command prompt area, describing the number of annotation objects of different types that have been processed and modified. The UPDATE parameter is also Boolean: if non-nil, any blocks processed will be updated such that the user immediately sees the changes, i.e. an (entupd) will be performed. Note that an (entmod) is performed on all modified entities, regardless of the value of the UPDATE parameter.

The function returns a real, which is the total number of annotation objects modified. Each attribute (rather than block) is treated as an annotation object for the purposes of this count.

7.4.	(naus_ddchtext_modentity)

This function performs modifications to a single annotation object. The syntax is:

(naus_ddchtext_modentity EG MOD-LIST UPDATE)

The EG parameter is the (entget) list for the object to modify. The MOD-LIST parameter indicates the type of modifications to perform (see below). The UPDATE parameter is Boolean: if non-nil, the object is actually modified using (entmod). Note that in the case of attributes, an (entupd) may also be required before the user sees the changes.

The function returns the modified (entget) list for the entity, or, if no changes have been made to the (entget) list, the function returns nil.

7.5.	The MOD-LIST Parameter

Here is an example of a list that represents the MOD-LIST section of the return list from a (naus_ddchtext_dialog) function call, or the MOD-LIST parameter that is passed to the (naus_ddchtext_modss) or (naus_ddchtext_modentity) function calls.

(("search" "S" "R" T)

 ("visible" T)

 ("mtextcode" "mtextcode_strip_height")

 ("upcase" "upper")

 ("style" "STANDARD")

 ("oblique" 0.0 nil)

 ("mtextwidth" 0.0 nil)

 ("width" 0.8 T)

 ("rotation" 0.0 nil)

 ("height" 0.2 T)

 ("color" 256)

 ("layer" "0")

 ("justify" 0 0 7 T)

)

This list comprises a series of sub-lists, each of which has as its first element a lower-case string. This is a word describing a particular type of change to make to the objects. The elements of each sub-list following the initial string will vary, depending on the exact modification in question. Each type of allowed sub-list is described below.

7.5.1.	The "search" Sub-list

The "search" sub-list controls the searching and replacing of annotation object values. There are two possible formats for this sub-list.

Here is the first format:

("search" search-text replace-text case-sensitive)

where search-text and replace-text each represent a string of text to search for and replace, respectively.

Example:

("search" "FOO" "BAR" T)

Here is the second format:

("search" multiple-search-list)

where multiple-search-list is a list of lists, each list comprising three elements representing the search-text, replace-text and case-sensitive items described above. Each search and replace modification will be performed in turn, from left to right.

Example:

("search"

 (("FOO" "BAR" T)

 ("FRED" "BERT" nil)

 ("Hello" "Goodbye" T)

)

)

7.5.2.	The "visible" Sub-list

The "visible" sub-list controls attribute visibility. The format is:

("visible" visibility)

where visibility is Boolean. If nil, then the attribute objects are made invisible. If non-nil, then the attribute objects are made visible.

Examples:

("visible" nil)

("visible" T)

7.5.3.	The "mtextcode" Sub-list

The "mtextcode" sub-list controls what mtext code stripping operation is performed. The format is:

("mtextcode" code-type)

where code-type is a lower-case string with one of two possible values. If it is "mtextcode_strip_height", then the mtext height codes are made relative, rather than absolute. If it is "mtextcode_strip_all", then all mtext height codes are stripped.

Examples:

("mtextcode" "mtextcode_strip_height")

("mtextcode" "mtextcode_strip_all")

7.5.4.	The "upcase" Sub-list

The "upcase" sub-list controls what case the objects are converted to. The format is:

("upcase" case-type)

where case-type is a lower-case string with one of four possible values: "upper", "mixed", "sentence" or "lower".

Example:

 ("upcase" "upper")

7.5.5.	The "style" Sub-list

The "style" sub-list controls which text style the objects are converted to. The format is:

("style" text-style)

where text-style is a string containing the name of the pre-existing text style the objects are to be converted to.

Example:

("style" "STANDARD")

7.5.6.	The "oblique" Sub-list

The "oblique" sub-list controls the obliquing angle the objects are changed to. The format is:

("oblique" angle relative)

where angle is a real containing the angle in radians the objects are to be converted to, and relative is Boolean. If nil, then angle is used as an absolute angle. If non-nil, then angle is added to the existing angle of the objects.

Example:

("oblique" 0.0 nil)

7.5.7.	The "mtextwidth" Sub-list

The "mtextwidth" sub-list controls the objects' mtext width. The format is:

("mtextwidth" width relative)

where width is a real containing the width the objects are to be converted to, and relative is Boolean. If nil, then width is used as an absolute mtext width value. If non-nil, then width is multiplied by the existing mtext width of the objects.

Examples:

("mtextwidth" 0.0 nil)

("mtextwidth" 2.0 T)

7.5.8.	The "width" Sub-list

The "width" sub-list controls the objects' width factor. The format is:

("width" width relative)

where width is a real containing the width factor the objects are to be converted to, and relative is Boolean. If nil, then width is used as an absolute width factor value. If non-nil, then width is multiplied by the existing width factor of the objects.

Example:

("width" 1.0 T)

7.5.9.	The "rotation" Sub-list

The " rotation" sub-list controls the rotation angle the objects are changed to. The format is:

("rotation" angle relative)

where angle is a real containing the angle in radians the objects are to be converted to, and relative is Boolean. If nil, then angle is used as an absolute angle. If non-nil, then angle is added to the existing angle of the objects.

Example:

("rotation" 0.0 nil)

7.5.10.	The "height" Sub-list

The "height" sub-list controls the objects' text height. The format is:

("height" height relative)

where height is a real containing the height the objects are to be converted to, and relative is Boolean. If nil, then height is used as an absolute height value. If non-nil, then height is multiplied by the existing height of the objects.

Example:

("height" 0.2 T)

7.5.11.	The "color" Sub-list

The "color" sub-list controls the objects' colour. The format is:

("color" col)

where col is an integer containing the colour number the objects are to be converted to. 0 is ByBlock and 256 is ByLayer.

Example:

("color" 256)

7.5.12.	The "layer" Sub-list

The "layer" sub-list controls the objects' layer. The format is:

("layer" lay)

where lay is a string containing the layer name the objects are to be converted to.

Example:

("layer" "0")

7.5.13.	The "justify" Sub-list

The "justify" sub-list controls the objects' justification. The format is:

("justify" text-code-1 text-code-2 mtext-code in-situ)

where text-code-1 and text-code-2 are integers representing the DXF codes 72 and 73 representing the desired text justification, mtext-code is an integers representing the DXF code 71 representing the desired mtext justification, and in-situ is Boolean. If nil, the insertion point does not move (so the text probably does). If non-nil, then the insertion point is moved in an attempt to keep the text where it was.

Example:

("justify" 0 0 7 T)

7.6.	Modifying DDChText.ini

The file DDChText.ini controls the behaviour of the dialogue box. You can edit this file with a text editor. There is currently only one setting that you can change. Make sure you don't leave any spaces either side on the equal sign or at the end of the line.

7.6.1.	The Highlight Setting

This setting affects all of the edit boxes used to enter data into the DDChText dialogue box. You can specify whether you want the edit box contents to be highlighted (selected) or not by changing the highlight setting in the ini file. Look for the following line:

highlight=true

This can be set to either true or false. To turn off highlighting of the text, change the line to:

highlight=false

8.	Revision History

This section contains a history of all revisions to DDChText. The files shown as changed are those files that were substantially changed in the revision. All files have their dates and version numbers changed at every revision.

8.1.	Version 3.1

Issued on 19 September 2001, this was a public release of an intermediate update.

Support was added for AutoCAD 2000i and 2002. This includes the provision of new menu files specific to AutoCAD 2002, to allow for the new large toolbar button size of 32 x 30 pixels.

Angles were not being handled correctly in cases where the angle direction and base were other than the AutoCAD defaults. Version 3.1 fixes this bug.

The DDChText dialogue box handles obliquing angles better. Angles such as 350 are now shown as –10. Also, attempts to enter angles outside the permitted range (-80 to 80 degrees) are trapped by the dialogue box, rather than being allowed in the dialogue box but then ignored when the objects are being modified.

In AutoCAD releases that allow the use of spaces in layer names, DDChText was incorrectly disallowing the use of such layer names. Version 3.1 fixes this bug.

A new .ini file was added to store settings. Currently only the "highlight" setting is used, but in future releases this file may be used for other settings.

The documentation was updated to reflect the above changes. References to the defunct CompuServe web site and email account were replaced with the up-to-date BigPond information. Mention was made of the ability to order on-line at www.manusoft.com.

Changed:	DDChAcad.lsp, DDChText.doc, DDChText.lsp, DDChReg.lsp, DDChText Order Form Australia.doc

New:	DDChText.ini,.DDCh2002.mnu, DDCh2002.mnc, DDCh2002.mnr, DDCh2002.mns, DDCh�32x30.bmp

8.2.	Version 3.01

Issued on 6 January 2000, this was a public release of a minor update.

The way dimension modifications are handled was changed in response to user feedback. In DDChText version 3.0, the changes that could be made to a dimension were likely to be of limited use to most users because the changes were made to the text or mtext within the dimension block. This meant that the rest of the dimension did not change to fit the modified text, and that the changes were lost as soon as the dimension was modified. In DDChText version 3.01, the changes are applied to the dimension itself rather than the dimension block, using overrides where applicable. This change reduces the number of dimension text settings that can be modified, but it more closely resembles the way AutoCAD's native commands work and is therefore generally less confusing to users.

The dimension object type is now selected by default, the first time DDChText is used in a drawing session.

Bug fix: under some circumstances, AutoCAD's text style table can include styles without names. DDChText version 3.0 was displaying these blank style names in the style drop-down list. Version 3.01 eliminates these pointless styles from the list.

The documentation was updated to reflect the above changes, and a few minor errors were corrected.

Changed:	DDChText.doc, DDChText.lsp, DDChReg.lsp

8.3.	Version 3.0

Issued on 18 November 1999, this was a public release of a major update.

DDChText remembers the dialogue box settings from one invocation to another within a drawing session, making it easier to perform multiple identical or similar changes.

Toggles were added to turn on and off all of the object modification toggles, and all of the object type toggles. Among other uses, this feature made it easier to turn off any unwanted toggles left on from a previous invocation, or to see all of the settings of a pre-selected object.

The DDChText dialogue box was completely redesigned to make room for the new features. This meant the abandonment of any attempt to keep the dialogue box small enough to fit on a 640 x 480 VGA screen. The minimum requirement grew to 800 x 600 under Windows, assuming small fonts were used.

Official support for AutoCAD 2000 was added, and official support for AutoCAD Release 12 was dropped. Although DDChText 3.0 may well still work fine with Release 12, it was not tested.

Support was added for the RTEXT object type, both in AutoCAD Release 14 and AutoCAD 2000.

Support was added for the Dimension object type.

The ability to change attribute visibility was added.

The ability to change mtext justification was added.

The ability was added to retain the object position while changing the justification.

The ability to change absolute mtext height codes to relative ones was added.

The ability to strip all codes from mtext was added.

The ability was added to change the case of objects to one of four different types (upper, title, sentence and lower).

A button was added to allow users to select from the list of available block names when choosing attribute filters. A similar button was added for attribute tag names.

The search and replace feature was significantly enhanced to allow for a wide range of methods of selecting the text to be replaced, including the use of wildcards and character position numbers.

A multiple search and replace feature was added to allow a variety of search and replace operations to be performed in a single pass. . It also allows users to save, load, and merge sets of search and replace values. This feature was made available only to registered users.

The standard search and replace feature was made available to unregistered users: it was previously reserved for registered users.

The Word format documentation was made available to unregistered users and the text format documentation was dropped. The documentation was thoroughly updated, including new document formatting.

The revision history was incorporated into the main documentation file.

The nag screen was changed from appearing every tenth invocation to appearing randomly an average of once every ten invocations.

The layer selection dialogue box was made larger, consistent with the block and tag name dialogue boxes.

In addition to the DDCHTEXT environment variable, three other mechanisms were provided to allow for users who wish to keep the DDChText files out of AutoCAD's search path.

The installation procedure was simplified, and the DDChLoad.lsp file was discarded.

The toolbar menu bitmaps were updated to more accurately reflect the new shape of the dialogue box.

The documentation was updated to reflect Manusoft as the primary source for registrations. The old registration form DdchText.frm was replaced by the Word documents DDChText Order Form.doc and DDChText Order Form Australia.doc.

The auto-loading software (now in DDChAcad.lsp) was updated to allow for various situations that can occur because of the change from AutoLISP to Visual Lisp in AutoCAD 2000.

The format of the MOD-LIST parameter was modified to eliminate dotted pairs and to change "layr" to "layer".

Changed:	DDChText.doc, DDChText.dcl, DDChAcad.lsp, DDChText.lsp, DDCh-16.bmp, DDCh-24.bmp, DDCh-32.bmp

Removed:	DDChText.rev, DDChText.frm, DDChLoad.lsp, DDChText.txt, DDCh13.mnc, DDCh13.mnr, DDCh13.mns, DDCh13.mnu, DDCh14.mnc, DDCh14.mnr, DDCh14.mns, DDCh14.mnu

New:	DDChReg.lsp (registered users only), DDChText Order Form.doc, DDChText Order Form Australia.doc, DDChTe13.mnu, DDChTe13.mnc, DDChTe13.mnr, DDChTe13.mns, DDChText.mnu, DDChText.mnc, DDChText.mnr, DDChText.mns

8.4.	Versions 2.02 to 2.10

These version numbers were used for private releases where companies paid for custom programming services to add specific features on request. No details are publicly available.

8.5.	Version 2.01

Issued on 18 May 1997, this was a minor bug fix. As this was such a minor change, no documentation except the revision history was modified.

Bug fixed: obliquing angle modifications were always acting as if the "+ Current" toggle was on, even when it was off.

Changed:	DDChText.rev, DDChText.lsp

8.6.	Version 2.0

Issued on 15 May 1997, this was a restructure to allow new features.

Addition of API functions to allow programmers to call parts of DDChText. This feature is used by DDEdText version 3.0 and later.

Buttons "Select" and "All" changed to "OK" and "Global".

Support for Release 14 added, including menu support files for 24-pixel large bitmaps.

All DDChTool.* files replaced by DDCH13.* and DDCH14.* versions.

If objects are pre-selected, first selected object is used as prototype for defaults in dialogue box.

Documentation updated with information about new features and API functions, and a simplified installation procedure is described.

Changed:	DDChText.dcl, DDChText.doc, DDChText.txt, DDChText.rev, DDChText.lsp, DDChLoad.lsp

Removed:	DDChTool.mnc, DDChTool.mnr, DDChTool.mns, DDChTool.mnu

New:	DDCh13.mnc, DDCh13.mnr, DDCh13.mns, DDCh13.mnu, DDCh14.mnc, DDCh14.mnr, DDCh14.mns, DDCh14.mnu

8.7.	Version 1.01

Issued on 3 October 1996, this was a public release of a minor update. Software was functionally identical to 1.0, but new auto-loading mechanism provided to work around R13c4 bugs. Documentation overhauled to standardise around this ACAD.LSP-based mechanism, rather than offering 5 installation choices, as was previously the case. Instructions provided for reversal of the previously suggested MNL-file-based auto-loading mechanism.

Changed:	DDChText.doc, DDChText.txt, DDChText.rev, DDChAcad.lsp, DDChTool.mnu

Removed:	DDChLoad.mnl

New:	DDChLoad.lsp, DDChTool.mns, DDChTool.mnc, DDChTool.mnr

8.8.	Version 1.0

This was the Initial public release on 4 March 1996.

New:	DDChText.lsp, DDChText.dcl, DDChText.txt, DDChText.frm, DDChText.rev, DDChAcad.lsp, DDChTool.mnu, DDChLoad.mnl, DDCh-16.bmp, DDCh-32.bmp, DDChText.doc

9.	Legal Stuff

The DDChText programs and all accompanying files are copyrighted software (c) cad nauseam, 1996-2001. All rights reserved.

Disclaimer: This software is provided "as is" without express or implied warranty. All implied warranties of fitness for any particular purpose and of merchantability are hereby disclaimed. Engage brain before use.

Permission notice: Permission to use, copy, and distribute the unregistered version of this software for any purpose and without fee is hereby granted, provided that it is distributed unmodified and with all supporting files and documentation, including this file. Permission to distribute this software for any fee must be sought from cad nauseam. In particular, unencrypting the AutoLISP code, hacking around with it, creating a password-protected Chinese language version and charging an inflated price for it, is expressly forbidden. Such conduct represents a copyright infringement in contravention of various national and international laws and conventions.

AutoCAD is a registered trademark of Autodesk, Inc.

AutoLISP is a trademark of Autodesk, Inc.

Windows is a trademark of Microsoft Corporation.

For registered users, cad nauseam will answer questions and fix serious bugs for a period of twelve months from your initial use. If DDChText fails to perform its intended function as stated in this documentation, cad nauseam will refund the purchase price on request.

�PAGE �4�

